
zorder-lib: Library API for Z-Order Memory Layout

E. Wes Bethel

Lawrence Berkeley National Laboratory
Berkeley, CA, USA, 94720

April, 2015

i



Acknowledgment

This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing
Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, through the
grant “Towards Exasacle: High Performance Visualization and Analytics,” program manager Dr.
Lucy Nowell. This research used resources of the National Energy Research Scientific Computing
Center.

Legal Disclaimer

This document was prepared as an account of work sponsored by the United States Government.
While this document is believed to contain correct information, neither the United States Gov-
ernment nor any agency thereof, nor The Regents of the University of California, nor any of their
employees, makes any warranty, express or implied, or assumes any legal responsibility for the ac-
curacy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by its trade name, trademark, manufacturer, or other-
wise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or The Regents of the University of California.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or The Regents of the University of California.

ii



zorder-lib: Library API for Z-Order Memory Layout

E. Wes Bethel

Lawrence Berkeley National Laboratory
v1.0, April 2015

1 Introduction

This document describes the motivation for, elements of, and use of the zorder-lib, a library API
that implements organization of and access to data in memory using either a-order (also known as
“row-major” order) or z-order memory layouts.

The primary motivation for this work is to improve the performance of many types of data-
intensive codes by increasing both spatial and temporal locality of memory accesses. The basic
idea is that the cost associated with accessing a datum is less when it is nearby in either space or
time [3].

In a-order layout, data is laid out in memory in a contiguous fashion. When the data array
is multidimensional (e.g., 2D arrays in the case of images, 3D arrays in the case of volumes, etc.)
one fundamental problem that inhibits spatial locality is that accesses that may be nearby in index
space may not be be spatially nearby in memory. For example, if A is a two-dimensional array of
4-byte floats having dimensions 1024 × 1024, then A[i, j] and A[i + 1, j] are adjacent in physical
memory, but A[i, j] and A[i, j+1] are 4K bytes apart in memory. We refer to this as the index-space
locality problem.

Previous work in increasing locality includes blocking and tiling techniques, both of which aim
to break a larger problem into a number of smaller problems that fit into high-speed, on-chip cache
memory. Early research, such as Lam et al. 1991 [4], focused on deriving the optimal blocking
factor size using a model that included cache line size and code characteristics. In these approaches,
data remains organized in a-order layout, but if the blocking or tiling strategy is working properly,
because it fits into cache, the cost of the index-space locality problem is presumably negligible.
These approaches require modification to the underlying code to implement the blocking or tiling
strategy, and are therefore intrusive.

An alternative approach for increasing locality is to use a space-filling curve (SFC ) layout. SFC
approaches lay out data in memory differently, so that an access that is nearby in index space is likely
nearby in physical memory. There are a number of SFC approaches, including z-order (also known
as Morton-order curves), Hilbert-order, and others, which are presented in a comprehensive fashion
in Bader, 2013 [1]. While these approaches differ in the exact way they index a subspace, they
are all known for having favorable spatial locality characteristics when compared to the traditional
a-order layout. Fig. 1 illustrates the difference between a-order and z-order layouts.

In this implementation, we are using the z-order layout, rather than one of the other SFC layouts
(e.g., Hilbert curve) due to the fact that z-order indices are relatively inexpensive to compute.

How much performance can be gained by using a z-order layout? The answer varies, depending
upon a code’s memory access pattern and the underlying platform. Bethel et al. 2015 [2] explore

1



Key observation: 
•  Want: nearby in index space also nearby in physical space 

Space Filling Curves 

Row-major order Z-order 

Figure 1: This illustration shows the difference between a-order and z-order memory layout formats.
This SFC layout uses the Z-order memory layout, which is a variation of the Morton-order space-
filling curve.

this very question, studying two different algorithms (raycasting volume rendering and a bilateral
smoothing filter, which is based upon a 3D convolution kernel of user-defined size) on two different
platforms (Intel Ivy Bridge and Intel Knight’s Corner) and find that in nearly all cases, the z-order
layout results in faster runtime and better utilization of the memory hierarchy in the form of better
use of the cache hierarchy. The absolute amount varies, but ranges from nearly equal (a-order is a
small bit faster in a very few cases) to situations where the z-order code is upwards of 800% faster
in a few cases.

2 zorder-lib Implementation and Use

2.1 Overview

zorder-lib is a C-language library callable from C or C++ programs. It is best suited for use with
applications that will access data stored in 2D or 3D arrays using structured, semi-structured, or
unstructured (i.e., unpredictable) memory access patterns.

Typical use will consist of first performing some one-time initialization (Sec. 2.2), data con-
version from a-order to z-order format (Sec. 2.3), then accessing array elements from memory to
perform the desired computations (Sec 2.4).

2.2 Initialization

Initialization of the library consists of invoking the routine zoInitZOrderIndexing specifying input
parameters that indicate the (i, j, k) size of the array that will be used, along with a memory layout
enumerator ZORDER LAYOUT or AORDER LAYOUT.

This routine returns a pointer to a ZOrderStruct, which the application will use for the re-
mainder of the run to access data items in the array.

The routine zoInitZOrderIndexing performs various initialization steps, which consist of pre-
computing some relatively small-sized tables, which are part of the ZOrderStruct, and that are
used to accelerate the computation of both a-order and z-order indices later on.

The memory layout enumerator, ZORDER LAYOUT or AORDER LAYOUT, is referenced only when
using the generic index access operator, which is described in Sec. 2.4.1.

2



A word of warning : the z-order layout method has an intrinsic limitation, which is that it
really wants to work only with data that is an even power of two in size in each dimension. This
zorder-lib implementation will function with data that is not an even power of two in size, but at
a cost, which will be described in Sec. 2.3 and Sec. 3.1.

2.3 Data Conversion

Assuming your application has a multidimensional array of data, which is laid out in a-order format,
then you will need to convert it to z-order with a call to the routine zoConvertArrayOrderToZOrder.

That routine takes as input a ZOrderStruct created by zoInitZOrderIndexing, along with a
pointer to your input data, let’s call it A, cast to a void *, as well as information about the size of
each array element element. For example, if your input array consists of doubles, then you would
specify the size of each element as sizeof(double).

The routine will return a pointer to a new array, also cast to a void *, which contains the
contents of your input array A rearranged into z-order layout in the new array, which we’ll call Z.

Several points of warning:

1. No zero-copy. In this implementation, we make a copy of your array A and put it into Z, but
rearrange A in the process so that it is in z-order format. There is no workaround for this situa-
tion, making a copy of the input data, unless you are able to have your data in A in z-order lay-
out to begin with. In which case, you would not need to call zoConvertArrayOrderToZOrder
to rearrange it.

2. Potential for significant inflation of memory footprint for uneven power-of-two sizes. This
warning cannot be overstated. When the input data is an even power of two in size in
each dimension, there will be no inflation. When the input data is not an even power of two
in size, there will be an inflation of the memory footprint such that the size of Z will be larger
than the size of A, sometimes by a lot. This limitation is explained in more detail in Sec. 3.1.

2.4 Accessing Data

Once data has been converted from a-order to z-order , the application will access data by a two-
stage process:

1. First, obtain the index of some (i, j, k) location in an array, which may be laid out using
a-order or z-order layout approaches. You will use the zorder-lib library routine(s) to obtain
this index.

2. Second, access the datum directly using the index provided by the first step.

The process of obtaining an index at (i, j, k) location can be done using one of two approaches,
either the “generic” method, or one of two layout-specific methods.

Note that the routines described in the following sections will compute an index for some (i, j, k)
location using the assumptions specified when you last called the routine zoInitZOrderIndexing.

The rationale behind having two different methods for computing an index, a generic one and
two layout-specific ones, is to provide the means for applications to be coded in a way that does
indexing agnostic of the underlying memory layout.

3



2.4.1 The Generic Method

The routine zoGetIndex takes as input a pointer to a ZOrderStruct, along with an i, j, k index, and
will return a single off t value indicating the index, or offset, along the one-dimensional z-order
curve where that data item lives. For example:

off_t indx;

double d;

double *data;

ZOrderStruct *zo;

/* initialization of zo and data not shown here */

indx = zoGetIndex(zo, i, j, k); /* obtain the index */

d = data[indx]; /* obtain the datum */

Where data is an array containing doubles laid out in z-order format using the routine zoConvertArrayOrderToZOrder,
and zo is a ZOrderStruct that has been initialized with zoInitZOrderIndexing.

The computation of indx is a function of the memory layout enumerator, either ZORDER LAYOUT

or AORDER LAYOUT, specified to zoInitZOrderIndexing at initialization time.

2.4.2 The z-order Specific Method

If you know you want to obtain an index of some (i, j, k) location in an array laid out using z-order
format, then your application my bypass the generic routine and use zoGetIndexZOrder.

The routine zoGetIndexZOrder takes as input a pointer to a ZOrderStruct, along with an
i, j, k index, and will return a single off t value indicating the location, or offset, along the one-
dimensional z-order curve where that data item lives. For example:

off_t indx;

double d;

double *data;

ZOrderStruct *zo;

/* initialization of zo and data not shown here */

indx = zoGetIndexZOrder(zo, i, j, k); /* obtain the index */

d = data[indx]; /* obtain the datum */

2.4.3 The a-order Specific Method

If you know you want to obtain an index of some (i, j, k) location in an array laid out using a-order
format, then your application my bypass the generic routine and use zoGetIndexArrayOrder.

The routine zoGetIndexArrayOrder takes as input a pointer to a ZOrderStruct, along with
an i, j, k index, and will return a single off t value indicating the location, or offset, along the
one-dimensional z-order curve where that data item lives. For example:

off_t indx;

double d;

double *data;

4



ZOrderStruct *zo;

/* initialization of zo and data not shown here */

indx = zoGetIndexArrayOrder(zo, i, j, k); /* obtain the index */

d = data[indx]; /* obtain the datum */

3 Limitations and Future Work

3.1 Limitations

There are two noteworthy limitations of zorder-lib, owing to the nature of the z-order SFC layout.
Both are described in Sec. 2.3, and are briefly repeated here.

First, there is no zero-copy conversion from a-order to z-order . When you convert an array
from a-order to z-order , you are making a copy of the data. The only way around this limitation
would be to, say, load data, already organized in z-order format, into memory for processing.

Second is the relationship between the power-of-two size limitation and memory “bloat” due to
padding that will happen when you want to work with array that is not an even power-of-two in
size in each dimension. Fig. 2 shows the type of memory inflation that will happen when exceeding
the power-of-two limitation by 1 in one dimension; inflation may range from about 1.5× up to
about 4×, depending upon various factors.

0	
  

0.5	
  

1	
  

1.5	
  

2	
  

2.5	
  

3	
  

3.5	
  

4	
  

4.5	
  

5	
  

8	
   16	
   32	
   64	
   128	
   256	
   512	
   1024	
   2048	
   4096	
   8192	
  

In
fla

%o
n	
  
Fa
ct
or
	
  

Data	
  Size	
  in	
  Each	
  Dimension	
  

Z-­‐Order	
  Layout	
  Memory	
  Footprint	
  Infla%on	
  

i+1,	
  j,	
  k	
  

I,	
  j+1,	
  k	
  

i,	
  j,	
  k+1	
  

I,	
  j,	
  k+2	
  

i=j=k	
  

Figure 2: This chart shows the memory footprint inflation that will occur when the array A is not an
even power of two in size in each dimension. The horizontal axis reflects array sizes 83, 163, ..., 81923.
When each of the i, j, k dimensions are all an even power of two, and the same size, then the size
of the z-order array Z is the same size as the source array A. However, when the size of one of the
dimensions increases by 1, the chart illustrates the effect of memory footprint increase depending
upon which of i, j, k is not an even power of two. Future work on zorder-lib will focus on methods
to reduce, if not eliminate, this inflation due to odd sized arrays.

However, memory inflation will also happen even when the data size is an even power-of-two in
size in each dimension, but when the dimensions are not all the same size. This particular inflation
happens due to how the z-order index is constructed, and a fix will be the subject of future work.

5



Fig. 3 shows the memory inflation effect that happens when all three dimension sizes are even
powers of two, but two dimension sizes are equal and the third dimension size varies.

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

35	
  

40	
  

32	
   64	
   128	
   256	
   512	
   1024	
   2048	
  

In
fla

%o
n	
  
Fa
ct
or
	
  

Varying	
  Dimension	
  Size	
  

Z-­‐Order	
  Memory	
  Layout	
  Footprint	
  Infla%on	
  

i=j=256,	
  k	
  varies	
  

i=k=256,	
  j	
  varies	
  

j=k=256,	
  i	
  varies	
  

Figure 3: This chart shows the memory footprint inflation that will occur when the array A is an
even power of two in size in each dimensions, but the dimensions are not all the same size. Here, we
are holding two of the dimension sizes constant at 256, and varying the size of the third dimension.

The source of the memory inflation is due to the nature of how the z-order indexing works: it
interleaves the ijk bits as kjikjikji rather than the more traditional kkkjjjiii formulation associated
with a-order indexing.

In the absence of a more rigorous analysis, the amount of memory inflation that results from
this z-order indexing artifact can be estimated as follows: each increase of 1 bit in resolution in a
given dimension could result in up to an 8-fold increase in the amount of memory required. This
is an upper bound on the cost of a single bit of resolution increase.

3.2 Future Work

There are several potential avenues for future work. One would include efforts to have the library
routines be callable from other languages, like Fortran and Python.

Another area of future work is to expand zorder-lib to provide support for arrays of arbitrary
dimension in a way that does not incur a memory inflation penalty.

In order to effectively implement the infrastructure needed to support datasets of arbitrary
dimension (i.e., not an even-power-of-two in size), it is likely the case that a future version of
zorder-lib will have a modified interface. Specifically, it will likely require applications to use a
getData call, rather than the present approach of a generic getIndex call that returns a sizeof t

the application then uses as an index to obtain a datum from an array.

4 Obtaining the Source Code

zorder-lib has been approved for release by the LBNL Technology Transfer license under an Open
Source license (BSD derivative). You may obtain the source code from this URL:
https://codeforge.lbl.gov/projects/z-order/.

6



References

[1] Michael Bader. Space-Filling Curves - An Introduction with Applications in Scientific Comput-
ing, volume 9 of Texts in Computational Science and Engineering. Springer-Verlag, 2013.

[2] E. Wes Bethel, David Camp, David Donofrio, and Mark Howison. Improving Performance of
Structured-memory, Data-Intensive Applications on Multi-core Platforms via a Space-Filling
Curve Memory Layout. In International Workshop on High Performance Data Intensive Com-
puting, an IEEE International Parallel and Distributed Processing Symposium (IPDPS) work-
shop, Hyderabad, India, May 2015.

[3] Peter J. Denning. The Locality Principle. Commun. ACM, 48(7):19–24, July 2005.

[4] Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf. The cache performance and
optimizations of blocked algorithms. In Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS IV, pages
63–74, New York, NY, USA, 1991. ACM.

7


